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Turbulence structure behind the shock in
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The interaction between vortical isotropic turbulence (IT) and a normal shock wave is
studied using direct numerical simulation (DNS) and linear interaction analysis (LIA).
In previous studies, agreement between the simulation results and the LIA predictions
has been limited and, thus, the significance of LIA has been underestimated. In this
paper, we present high-resolution simulations which accurately solve all flow scales
(including the shock-wave structure) and extensively cover the parameter space (the
shock Mach number, Ms, ranges from 1.1 to 2.2 and the Taylor Reynolds number,
Reλ, ranges from 10 to 45). The results show, for the first time, that the turbulence
quantities from DNS converge to the LIA solutions as the turbulent Mach number, Mt,
becomes small, even at low upstream Reynolds numbers. The classical LIA formulae
are extended to compute the complete post-shock flow fields using an IT database.
The solutions, consistent with the DNS results, show that the shock wave significantly
changes the topology of the turbulent structures, with a symmetrization of the third
invariant of the velocity gradient tensor and (Ms-mediated) of the probability density
function (PDF) of the longitudinal velocity derivatives, and an Ms-dependent increase
in the correlation between strain and rotation.
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1. Introduction

Turbulent flows interacting with shock waves occur in many areas, including
internal and external hypersonic flight, combustion, inertial confinement fusion and
astrophysics. Due to the very large range of spatio-temporal scales of the problem
and complicating effects such as rapid changes in the thermodynamic state across the
shock, a detailed understanding of this interaction remains far from reach. In general,
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the shock width is much smaller than the turbulence scales, even at low shock Mach
number, Ms, and it becomes comparable to the molecular mean free path at high Ms
values. At larger Ms values, the flow equations themselves depart from the classical
Navier–Stokes equations and fully resolved simulations of both the shock and the
turbulence with extended hydrodynamics at practically relevant Reynolds numbers
will not be feasible for the foreseeable future.

When viscous and nonlinear effects can be neglected across the shock, the
interaction with turbulence can be treated analytically for small-amplitude disturbances
by assuming the shock as a perturbed discontinuity and using the linearized Euler
equations and Rankine–Hugoniot jump conditions. In order to derive analytical
solutions, a single plane wave moving at an angle ψ with respect to the shock is
considered first. Then the solutions for the flow and thermodynamic variables behind
the shock are obtained as a superposition of plane wave solutions, assuming that each
plane wave component of turbulence independently interacts with the shock. This
approach is called linear interaction analysis (LIA) (Moore 1954; Ribner 1954). Since
LIA was introduced in the 1950s, a number of studies have presented comparisons
between LIA and numerical simulations. Due to the high cost to resolve all the
turbulence scales, as well as the shock width, previous studies using direct numerical
simulation (DNS) (Lee, Lele & Moin 1993; Jamme et al. 2002) could consider weak
shocks only (Ms 6 1.5) in regimes where the interaction was dominated by viscous
and/or nonlinear effects and, consequently, showed limited agreement with the LIA
solutions. More recently, using shock-capturing schemes, the range of Ms values was
extended considerably (Lee, Lele & Moin 1997; Mahesh, Lele & Moin 1997; Larsson
& Lele 2009; Larsson, Bermejo-Moreno & Lele 2013). As an attempt to approach the
infinite Reynolds number limit using the simulation database, Larsson et al. (2013)
artificially removed viscous dissipation behind the shock wave using Reynolds stress
budget terms. A good agreement was achieved for the streamwise variation of the
turbulent kinetic energy, but individual Reynolds stresses and their ratios did not
match the LIA solutions.

Experimental realizations of this problem are also very challenging, due to problems
in controlling the shock wave and difficulties in taking measurements close to the
shock wave. Barre, Alem & Bonnet (1996) have studied the interaction at Ms = 3
and showed a good agreement for the amplification of streamwise velocity fluctuations
with LIA. Agui, Briassulis & Andreopoulos (2005) also found a good agreement for
the same quantity at Ms = 1.04; however, at higher Ms their results are considerably
higher than the LIA solution. Thus, as a result of the limited agreement presented in
previous studies, the significance of LIA has not yet been fully appreciated. This also
led to the recent proposal of a universal amplification parameter (Donzis 2012) which
contradicts the Ms-dependent LIA predictions.

There have been a number of studies on the variation of the Reynolds stresses
and their transport equations, vorticity fluctuations, length scales, anisotropic states
of post-shock turbulence, and energy spectra behind the shock wave using numerical
and experimental data (Andreopoulos, Agui & Briassulis 2000; Larsson et al. 2013).
However, to the authors’ knowledge, the local structure of post-shock turbulence has
not yet been investigated in detail. Therefore, here, we reassess the importance of LIA
for the shock–turbulence interaction (STI) problem and attempt to fill some important
gaps in our knowledge of turbulence undergoing this interaction.

In this study, using fully resolved simulations extensively covering the parameter
space, we show that the DNS results do converge to the LIA solutions as Mt becomes
small (even when the Taylor Reynolds number, Reλ, is not very large) and emphasize
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the importance of the theory in many practical applications when the shock width is
much smaller than the turbulence scales. In order to examine higher-order turbulence
statistics, we extend the classical LIA formulae to compute the full post-shock flow
fields using an isotropic turbulence (IT) database. The LIA solutions are used to
examine the turbulence structures immediately behind the shock wave for high-Ms

interaction problems, where fully resolved DNS are not feasible.

2. Numerical details

We have conducted fully resolved simulations of STI in an open-ended domain with
lateral periodic boundary conditions and the reference frame moving with a shock
wave. The compressible Navier–Stokes equations with the perfect gas assumption
are solved using the compressible version of the CFDNS code (Livescu et al. 2009;
Petersen & Livescu 2010). The ratio of specific heats is γ = 1.4, the viscosity varies
with the temperature as µ = µ0(T/T0)

0.75, and the Prandtl number is Pr = 0.7. The
flow variables are non-dimensionalized by the upstream mean density, temperature
and speed of sound. The spatial discretization is performed using sixth-order compact
finite differences (Lele 1992) and the variable time step Runge–Kutta–Fehlberg
(RK45) method is used for time advancement. An accelerating layer ∼10% of the
domain length is used at the outflow boundary (Freund 1997) to ensure non-reflecting
boundary conditions. The sensitivity of the results to the outflow boundary conditions
has been tested by repeating the simulation with 2π, 4π and 6π domain lengths in
the streamwise direction using simple sine waves and also for the full STI problem.
The results presented here for the 4π domain show no noticeable wave reflections at
the boundary or influence of the accelerating layer on the domain of interest around
the shock. The mean shock drifts slightly in time (as also observed by Larsson
& Lele 2009), with the speed increasing with Ms for the accelerating layer used
here. The largest drift speed, obtained for Ms = 2.2, was approximately 0.1 % of
the free-stream velocity, and significantly smaller at lower values of Ms. The results
presented in this paper remain the same whether the statistics are computed at fixed
locations or moving with the drifting shock.

The number of mesh points is large enough such that all flow scales, including
the shock width (δ) and the Kolmogorov length scale (η) upstream and downstream
of the shock wave, are accurately resolved without applying any shock-capturing
or filtering methods. At least 12 grid points are used in the streamwise direction
across the shock wave. Shock-front corrugation is also well resolved in the transverse
directions, which is important to accurately predict the evolution of transverse velocity
fluctuations (Lee et al. 1997; Larsson & Lele 2009). The computational domain is
4π× (2π)2 in the streamwise and transverse directions. Depending on the target flow
state, 1282–10242 grid points are used in the transverse plane and 512–4096 grid
points, together with a non-uniform mesh which is finest around the shock, are used
in the streamwise direction. The results presented in this paper are converged under
grid refinement. This has been tested in several shorter simulations with single plane
waves and turbulent fields, in which the mesh around the shock was kept uniform
and refined up to four times the resolution used in the final calculations.

In order to provide realistic turbulence upstream of the shock wave, auxiliary forced
IT simulations, with a background velocity matching the shock speed, are performed.
The linear forcing method for compressible turbulence (Petersen & Livescu 2010) is
used with the most energetic wavenumber, k0=4, the ratio of dilatational to solenoidal
kinetic energies, χ = 0.0005∼ 0.12 (quasi vortical turbulence), and η/∆= 1.7∼ 2.8,
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where ∆ is the grid spacing. A discussion on the turbulence spectra resulting from
this forcing method is provided in Petersen & Livescu (2010). The IT grid spacing is
the same as the grid spacing in the transverse directions in the STI simulations. Here
η/∆ of the present IT database has been chosen such that post-shock turbulence is
also well resolved. The minimum value of η/∆ at the inflow of the STI domain is 1.7,
becoming ∼2 at the shock after the spatial decay. Larsson & Lele (2009) derived the
formulation for the decrease of η across the shock wave. The largest decrease of η in
this study is ∼40% for Ms= 2.2, thus the smallest η/∆ is still larger than 0.8 behind
the shock wave. For this value, the error of the compact scheme used here is small at
the Nyquist scale relative to a spectral method with ηkmax = 1.5 (Petersen & Livescu
2010). Plane data are recorded at a fixed plane perpendicular to the streamwise
direction and the data are fed through the inlet of the STI domain. Here, the inlet
turbulence is advected with the supersonic mean velocity and encounters a stationary
shock wave. In previous studies, temporally decaying IT data was transformed into
spatially decaying turbulence using Taylor’s hypothesis. For compressible turbulence,
this hypothesis has limitations at high Mt due to the ambiguity with acoustic wave
propagation (Lee, Lele & Moin 1992). The present approach may become a good
alternative for high-Mt flows or flows with a significant acoustic component. The
turbulence statistics are collected after one flow-through time to remove the initial
transients and the averages (〈·〉) are taken over time and transverse directions. At least
three flow-through times are used to collect instantaneous data and the results are
converged. The mean location of the shock is at streamwise position x = 0 and the
turbulence quantities are non-dimensionalized by their values immediately upstream
of the shock.

Figure 1 shows the parameter space considered in the present study. The Ms values
are 1.1, 1.2, 1.4, 1.8 and 2.2. Here Reλ immediately upstream of the shock varies
between 10 and 45. Here Mt2−LIA is the post-shock turbulent Mach number computed
using LIA for given upstream Mt and Ms. Here Mt2−LIA becomes the highest possible
turbulent Mach number near the shock wave, assuming that viscous and nonlinear
effects reduce the amplification. The comparison of Mt2−LIA with the downstream mean
streamwise Mach number (Mt2−LIA/Ms2) may provide an indication for the linear
interaction regime, as it represents an upper bound for the ratio between velocity
fluctuations and mean velocity. Below or close to the lines of Mt2−LIA = 0.1Ms2,
nonlinear effects may be small during the interaction and near the shock wave. The
Mt = 0.6(Ms − 1) curve divides the interaction regimes where the shock remains
simply connected (wrinkled shock) and where it does not (broken shock) (Larsson
et al. 2013). In this study, the parameter range covers the interaction regimes from
linear inviscid, close to the LIA limit, to regimes dominated by nonlinear and/or
viscous effects.

In the previous studies using LIA, only second-moment statistics have been
examined. In order to compute the full post-shock flow fields, which are necessary
to examine most of the higher-order quantities, one needs full flow fields in front of
the shock as well. These fields are taken from separate forced IT DNS. The velocity
fields are Fourier transformed and the solenoidal components are extracted using the
Helmholtz decomposition (Livescu, Jaberi & Madnia 2002). Then, the complex LIA
amplitude, Av, is computed (the detailed LIA procedure can be found in Mahesh et al.
1997) and, after applying the LIA coefficients, a complete inverse Fourier transform
is performed to recover the full velocity fields. Note that in previous studies the
inverse Fourier transform was considerably simplified since the statistics required
|Av|2 information only, which was extracted from the IT energy spectrum, E(k), as
|Av|2 = E(k)/(4πk2).
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FIGURE 1. Parameter range for the simulations in the (Mt, Ms) domain. The regimes
of the interaction can be asserted with the black line (above – broken shock, below
– wrinkled shock) and the red-dashed or blue-dotted curves (below – linear effects
dominate).
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FIGURE 2. R11 variation through the shock for a single vortical plane wave from DNS
and LIA at Ms= 1.2. (a) ψ = 45◦ and (b) ψ = 65◦. The top solid line represents the LIA
solution.

3. Results

When there is a large separation in scale between the shock width and the incoming
small-amplitude disturbances, viscous and nonlinear effects become negligible during
the interaction process. In this case, the DNS results should be close to the LIA
prediction. The interaction of a single vortical plane wave with a shock wave is
considered in figure 2, following the set-up of Mahesh et al. (1997). The variation of
the streamwise Reynolds stress (R11 = 〈u′u′〉) across the shock is compared between
DNS and LIA. The LIA solution depends only on Ms and the angle between the
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FIGURE 3. Convergence of (a) R11 and (b) Ωtr, through a Ms = 1.2 shock to the LIA
solution (top solid lines) as the nonlinear and viscous effects become small for the
interaction. Here, δ/η= 2.3, 1.3, 0.69, 0.34 and 0.17, as Mt decreases from 0.27 to 0.02.
Here Reλ is fixed at 20.

wavevector and streamwise direction, ψ , and is independent of the wavelength λ.
When the ratio of λ to the laminar shock thickness δ is small, the DNS results are
very different from the LIA solution, with the case λ/δ= 1 showing no amplification
at all. However, as λ/δ increases, the DNS results converge to the LIA prediction,
even close to the critical angle (here, ψcr ' 70◦). Here, ψcr is the angle at which
the acoustic disturbance behind the shock changes its nature from a propagating
to an attenuating wave and where the amplification increases sharply. This large
amplification requires stronger constraints for the DNS to have small nonlinear
effects. Thus, the results suggest that the scale separation can be a criterion for
controlling the viscous effects on the interaction. Note that the figures do not show
the full variation through the shock wave (x = 0 in figures 2 and 3a), in order to
focus on the convergence to the LIA solution downstream of the shock. The rapid
variations at x = 0 have been associated with the shock motion (Lee et al. 1993;
Larsson et al. 2013).

The convergence to the LIA prediction is shown for full turbulent fields in figure 3.
Here, the scale separation can be controlled by the ratio δ/η, which can be written
as δ/η ' 7.69Mt/(Re0.5

λ (Ms − 1)), and is varied by changing Mt. This expression
was derived using fully developed homogeneous IT relations by Moin & Mahesh
(1998) and proposed as a scale criterion for shock-capturing schemes. The DNS
amplifications converge to the LIA solutions when δ/η becomes small. Note that
the R11 convergence is slower than that of the transverse vorticity variance (Ωtr). The
peak location of Ωtr is immediately behind the shock wave. However, the peak of
R11 is located approximately one most energetic wavelength behind the shock and
is affected by viscous effects after the shock interaction (Larsson et al. 2013) when
Reλ is small. These effects are minimized at fixed Reλ as δ/η and Mt decrease, since
the eddy turnover time and, consequently, the decay distance increase. Nevertheless,
the viscous effects behind the shock lead to a slower R11 convergence to the LIA
solution compared to Ωtr.

The post-shock oscillations in figure 3(a) for the low-Mt cases are similar to those
observed in Lee et al. (1997) and are not due to a lack of statistical convergence of
the results, which has been carefully tested. Instead, our preliminary results seem to
indicate that they may be associated with the critical angle and differences between

756 R1-6



Turbulence structure behind the shock in shock–turbulence interaction

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

1.8

1.6

1.4

1.2

1.0

0.8
0 1 2 3 0 1 2 3

(a) (b)

Linear Nonlinear

Broken Wrinkled

FIGURE 4. R11 and R22 amplifications from DNS as a function of δ/η for different
Ms and Reλ ' 20. Symbols along the vertical axis represent the LIA solutions with the
shape and colour matched for the symbol-lines of the corresponding Ms. LIA solutions
and corresponding DNS results are connected by dotted lines. The previous DNS results
(Lee et al. 1993; Jamme et al. 2002) are shown with separate symbols. The black curve
represents the amplification model from Donzis (2012). A short vertical bar separates
linear and nonlinear regimes for each Ms by Mt2−LIA = 0.1Ms2.

the dilatational and solenoidal energies decay rates, which are exacerbated at low
solenoidal energy (and Mt) levels. However, these oscillations seem to have little
influence on the results immediately behind the shock, which are the main focus of
this paper.

Figure 4 shows the convergence of the streamwise (R11) and transverse (R22=〈v′v′〉)
Reynolds stress amplifications from DNS to the LIA solutions, as Mt decreases, for all
Ms values considered. The amplifications of the Reynolds stresses are computed as the
ratio of the values at the location where R11 is maximum and immediately upstream
of the shock, consistent with the LIA procedure. As most of the turbulence scales are
much larger than δ, the viscous effects through the shock easily become negligible,
even at Reλ' 20, and the results are not far from the LIA solution. Thus, it is stressed
that even at low Reλ, provided that Mt and, thus, δ/η are small enough, nonlinear
and viscous effects across the shock become negligible and the amplification can be
predicted by LIA. As expected, the convergence rate increases with Reλ (figure 5b).
Figure 5(a) shows the convergence of Ωtr. The peak location of Ωtr is immediately
behind the shock wave and relatively large δ/η (large Mt) cases show very similar
amplifications to the LIA.

The ratio δ/η, which combines the effects of Mt, Ms and Reλ (see above),
was proposed by Donzis (2012) as a universal parameter which characterizes the
turbulence amplification (the G-K line in figure 4a). This is in contradiction to
the LIA limit, which retains a separate Ms dependency as δ/η becomes small. The
present simulations converge to the LIA solution as δ/η (and Mt) becomes small
and exhibit the associated Ms dependence. There has been a long-standing open
question about the significance of LIA theory (Lee et al. 1993, 1997; Mahesh et al.
1997; Jamme et al. 2002; Larsson & Lele 2009; Larsson et al. 2013). These results
show that LIA is a reliable prediction tool when there is a scale separation between
turbulence and the shock and Mt is small enough (additional comparisons with
simulations are given below).

Previous studies have presented second-moment turbulence statistics using LIA and
IT energy spectra. To investigate more detailed turbulence physics, which require
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FIGURE 5. The amplifications of (a) Ωtr for different Ms and Reλ ' 20 and (b) R11
for different Reλ and Ms = 1.2, 1.4 and 1.8, as a function of δ/η. Higher-Reλ cases are
located above the corresponding lower-Reλ cases, showing faster convergence to the LIA
prediction. Symbols along the vertical axis represent the LIA solution with the shape and
colour matched for the symbol-lines of the corresponding Ms.

information beyond the incoming spectra of the primary variables, full flow fields
are needed behind the shock wave. For this, we have extended the final form of
the LIA formulae (see § 2 for more details) to use the full upstream flow fields.
These fields are generated in separate IT simulations and, here, we present results
corresponding to Reλ ' 100, Mt = 0.05, χ ≈ 0 and k0 = 1. Below, Shock-LIA and
Shock-DNS refer to the post-shock fields computed using the LIA theory and DNS,
respectively. Shock-LIA results at several Ms values are compared with the results
from Shock-DNS and the original IT database.

In order to characterize the turbulent structures behind the shock wave, we have
carried out an analysis of the invariant plane of the velocity gradient tensor (Perry
& Chong 1987). The second, Q∗, and third, R∗, invariants of the anisotropic part of
the velocity gradient tensor, A∗ = A− θ/3I , where A=∇v and θ =∇ · v, can reveal
the distribution of these structures (Pirozzoli, Grasso & Gatski 2004; Wang et al.
2012). The (Q∗, R∗) joint probability density functions (PDFs) for the flow fields
of IT, and upstream and downstream of the shock wave are shown in figure 6 at
Ms = 2.2 and 6.0. The post-shock results are calculated at k0x= 5, which is after the
peak of R11, where the variations of the mean quantities are negligible compared to
the contributions from the fluctuations and the turbulence decay is not yet significant.
The axes are normalized by QW = W ijW ij/2, where W is the rotation tensor. The
lateral lines denote the locus of zero discriminant of A∗, (27/4)R∗2 +Q∗3 = 0. For IT
and upstream of the shock wave, the joint PDF (figure 6a,b) exhibits the well-known
tear-drop shape which has been previously observed in IT, boundary layers, mixing
layers and channel flows (Pirozzoli et al. 2004; Wang et al. 2012), indicating that
most data points have a local topology of stable-focus/stretching (second quadrant)
or unstable-node/saddle/saddle (fourth quadrant). The shape is significantly modified
across the shock (figure 6c–f ), as the regions of stable-focus/compression (first
quadrant) and stable-node/saddle/saddle (third quadrant) are enhanced. Shocked
turbulence demonstrates a symmetrization of the (Q∗, R∗) joint PDF, similar to
the high-expansion regions in forced compressible IT (Wang et al. 2012). As Ms is
increased from 2.2 to 6.0 in figure 6(c,d), the normalized Q∗ and R∗ values decrease.
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FIGURE 6. Iso-contour lines of log10 PDF(Q∗/〈QW〉,R∗/〈QW〉3/2) for (a) IT with Reλ'100,
(b) upstream of the shock wave with Reλ' 20, (c) and (d) Shock-LIA with Ms= 2.2 and
6.0 and Reλ ' 100, (e) Shock-DNS with Ms = 2.2 and Reλ ' 20, and (f ) Shock-LIA with
Ms = 2.2 and Reλ ' 20. In each figure, four contour lines at 0, −1, −2, −3 are shown.
The lateral lines denote the locus of zero discriminant.

These effects are further discussed below. Figure 6(e,f ) show qualitatively similar
symmetric joint PDF shapes for Shock-DNS and Shock-LIA at the same Ms and Reλ,
compared to the tear-drop distribution of IT and upstream of the shock wave.

The symmetrization of the (Q∗, R∗) joint PDF can be further explored with the
unbiased measure of the deviatoric strain state, s̃∗ = (−3

√
6α̃β̃γ̃ )/((α̃2 + β̃2 + γ̃ 2)3/2),

where α̃, β̃ and γ̃ are the eigenvalues of the deviatoric part of the strain rate tensor,
S∗ (Lund & Rogers 1994). In figure 7(a), the s̃∗ values for IT are clustered near s̃∗=1,
consistent with the morphology of the (Q∗, R∗) joint PDF. However, the post-shock
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FIGURE 7. (a) PDF of s̃∗ for IT (Reλ' 100), two Ms cases using Shock-LIA with the IT
database, and Shock-DNS with Reλ' 20. (b) Skewness of longitudinal velocity derivatives
for IT and Ms = 1.05–6 using Shock-LIA (Reλ ' 100).

fields exhibit a quasi-symmetric, relatively flat s̃∗ PDF. The symmetrization of the s̃∗
PDF (and, consequently, of the PDF of the β eigenvalue) implies a corresponding
decrease in the vortex stretching term in the vorticity equation. The importance
of the vortex stretching mechanism can also be inferred from the skewness of the
longitudinal velocity derivatives. Figure 7(b) shows that the skewness for all three
directions becomes small as Ms increases, suggesting an Ms-enhanced symmetrization
of the PDFs of the corresponding longitudinal velocity derivatives. However, the
variation of the kurtosis of the longitudinal velocity derivatives, Kt, (not shown here)
becomes flat, with values around 4.0 at large Ms, so that non-Gaussian effects are
still present.

Depending on the relation between the magnitude of the rotation, W ijW ij, and
deviatoric strain, S∗ijS

∗
ij, the flow fields can be classified into regions of high

rotational strain, HRS, where W ijW ij > 2S∗ijS
∗
ij, high irrotational strain, HIS, where

0.5S∗ijS
∗
ij>W ijW ij, and highly correlated regions, CS, where 2S∗ijS

∗
ij >W ijW ij > 0.5S∗ijS

∗
ij

(Pirozzoli et al. 2004). Figure 8 shows the joint PDFs of the normalized W and S∗

magnitudes. The post-shock fields show a significant increase, amplified with Ms, of
PCS. This increase is due to the preferential amplification of the transverse components
of the two tensors, which can be inferred from the LIA solutions and explains the
decrease in the normalized Q∗ and R∗ values shown above. Thus, the presence
of the shock constrains the turbulence structures realizable, which, together with
the reduction in the vortex stretching mechanism, reflects an Ms-mediated tendency
towards an axisymmetric local state. The axisymmetric state has been explored for
Reynolds stresses and vorticity variances in Lee et al. (1993, 1997) and Larsson &
Lele (2009).

4. Summary and conclusions

A basic unit problem to study phenomena associated with the coexistence of shock
waves and background turbulence is that of the interaction between IT and a normal
shock wave. Although this has been extensively studied in the past, the significant
computational requirements have limited the DNS studies to very low Reynolds
numbers and/or large turbulent Mach numbers, as well as an overlap between the
shock and turbulence scales. Experimental realizations of this problem are also very
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FIGURE 8. log10 PDF(W ijW ij/(W ijW ij)max, S∗ijS
∗
ij/(W ijW ij)max) with six iso-contour lines,

from −0.5 to 2.0. Shock-LIA results using the IT database with Reλ'100 for (a) Ms=2.2
and (b) Ms = 6.0. (W ijW ij)max increases by factors of 5.42 and 19.7 for Ms = 2.2 and 6.0,
respectively, compared to the original IT values. The fractions of the volumes occupied
within the flow are shown for each region.

challenging, due to problems in controlling the shock wave and the small time
and length scales involved in the measurements, especially close to the shock front.
This has resulted in only limited agreement of the previous studies with the LIA
predictions.

Here, we present an extensive set of DNS results on much larger meshes than
previous studies and broadly covering the parameter range. For the first time, all
Reynolds stress tensor and vorticity components from the DNS are shown to converge
to the LIA solutions as viscous and nonlinear effects become small across the shock.
The agreement obtained in the previous studies was limited to the turbulent kinetic
energy only, while individual Reynolds stresses did not match the LIA solutions. The
viscous effects become negligible for small values of δ/η due to the much shorter
time scale of the interaction than that of the turbulence. Since δ/η ' 7.69Mt/(Re0.5

λ

(Ms − 1)), this ratio can be controlled using upstream Mt and Reλ values. Using
the DNS results, it is shown that δ/η, and thus the viscous effects across the
shock, can be made arbitrarily small even at modest Reλ, if Mt is sufficiently small,
while small Mt values ensure negligible nonlinear effects as well. These results
reconcile a long-standing open question about the role of LIA theory and establish
LIA as a reliable prediction tool for problems with a large separation between
the turbulence scales and the shock width, which are relevant to many practical
applications. Furthermore, when this scale separation is large, the exact shock profile
is no longer important in determining evolution across the shock, so that the LIA
can be used to predict high-Ms interaction problems where fully resolved DNS is not
feasible.

The classical LIA formulae have been extended to generate complete post-shock
flow fields. The procedure is much cheaper than full STI simulations, thus allowing
the study of post-shock turbulence at much larger Ms and Reλ values than DNS of STI.
The results show that the small-scale turbulent structures are modified considerably
across the shock wave with: (i) a symmetrization of the third invariants of A∗ and
S∗ and (Ms-mediated) of the PDF of the longitudinal velocity derivatives and (ii) an
Ms-dependent increase in correlation between strain and rotation. Thus, the shock
preferentially enhances the transverse components of the rotation and strain tensors,
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which constraints the flow structures. This, together with a decrease in the vortex
stretching mechanism, reflects a tendency towards an axisymmetric local state of the
post-shock turbulence.

The results provided concern the region immediately after the shock, where the
viscous effects are limited. As Reλ increases, the size of this region also increases.
Nevertheless, the spatial development of the shocked turbulence (e.g. a return to the
isotropic state) can also be studied with separate spatial simulations using the Shock-
LIA database, which is still an order of magnitude cheaper than DNS of the full STI
problem.
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